• 26 Posts
  • 34 Comments
Joined 1 year ago
cake
Cake day: July 13th, 2023

help-circle

  • I decided to do a deep dive into just the core of the Heart Nebula itself. Mellotte 15 is the name for the bright structure in the image, but the rest of the nebula itself is pretty extensive, and features the nearby soul nebula. IMO the uncropped heart nebula looks more like a chode with huge balls, but I can kinda see where it got it’s heart name… Captured over 8 nights in November 2024 from a bortle 9 zone.

    Places where I host my other images:

    Flickr | Instagram


    Equipment:

    • TPO 6" F/4 Imaging Newtonian

    • Orion Sirius EQ-G

    • ZWO ASI1600MM-Pro

    • Skywatcher Quattro Coma Corrector

    • ZWO EFW 8x1.25"/31mm

    • Astronomik LRGB+CLS Filters- 31mm

    • Astrodon 31mm Ha 5nm, Oiii 3nm, Sii 5nm

    • Agena 50mm Deluxe Straight-Through Guide Scope

    • ZWO ASI-290mc for guiding

    • Moonlite Autofocuser

    Acquisition: 29 hours 50 minutes (Camera at -15°C), unity gain

    • Ha - 58x600"

    • Oiii - 62x600"

    • Sii - 59x600"

    • Darks- 30

    • Flats- 30 per filter

    Capture Software:

    • Captured using N.I.N.A. and PHD2 for guiding and dithering.

    PixInsight Preprocessing:

    • BatchPreProcessing

    • StarAlignment

    • Blink

    • ImageIntegration per channel

    • DrizzleIntegration (2x, Var β=1.5)

    • Dynamic Crop

    • DynamicBackgroundExtraction

      duplicated each image and removed stars via StarXterminator. Ran DBE with a shitload of points to generate background model. model subtracted from original pic using the following PixelMath (math courtesy of /u/jimmythechicken1)

      $T * med(model) / model

    Narrowband Linear:

    • Blur and NoiseXTerminator

    • made SHO image and extracted stars to be processed separately

    • StarXterminator to completely remove stars from each Ha, Oiii, and Sii image

    • HistogramTransformation to stretch nonlinear

    Stars only image:

    • SpectrophotometricColorCalibration (narrowband working mode)

    • HSV repair

    • arcsinhstretch

    • scnr > invert > scnr > invert to remove greens and magentas

    • HistogramTransformation

    • (combined with starless pic later on)

    Nonlinear:

    • PixelMath to combine monochrome Ha Oiii and Sii images into a color image with SHO --> RGB, respectively

    • HistogramTransformation to adjust red green and blue color channels separately (basically stretched R and B, and toned the G down some)

    • LRGBCombination using stretched Ha as luminance

    • DeepSNR

    • Shitloads of Curve Transformations to adjust lightness, hues, contrast, saturation, etc

    • Clone stamp to remove one weird small blue speck near the core of the nebula (might’ve just clipped the colors a little too much in the histogram adjustments above^)

    • LocalHistogramEqualization (two rounds of this. one at kernel radius 16 for small scale detail, and one at 500 for large structures)

    • More curves

    • DarkStructureEnhance script (0.15 amount)

    • Pixelmath to add in the stretched RGB stars only image from earlier

      This basically re-linearizes the two images, adds them together, and then stretches them back to before. More info on it here)

      mtf(.005,

      mtf(.995,Stars)+

      mtf(.995,Starless))

    • some more curves

    • One more round of noiseX for small scale noise reduction

    • DynamicCrop in on just the core region

    • Resample to 80%

    • Annotation



  • Still shooting in Cygnus…

    Though I think IC1318/γ Cyg can be used to describe most of the nebulosity around the star Sadr, stellarium has it directly over the bright nebula in this image. Overall I’d consider it an improvement over my last go at it back in 2020. Captured over 12 nights from Oct-Nov 2024 from a bortle 9 zone.

    Places where I host my other images:

    Flickr | Instagram


    Equipment:

    • TPO 6" F/4 Imaging Newtonian

    • Orion Sirius EQ-G

    • ZWO ASI1600MM-Pro

    • Skywatcher Quattro Coma Corrector

    • ZWO EFW 8x1.25"/31mm

    • Astronomik LRGB+CLS Filters- 31mm

    • Astrodon 31mm Ha 5nm, Oiii 3nm, Sii 5nm

    • Agena 50mm Deluxe Straight-Through Guide Scope

    • ZWO ASI-290mc for guiding

    • Moonlite Autofocuser

    Acquisition: 25 hours 40 minutes (Camera at -15°C), unity gain

    • Ha - 50x600"

    • Oiii - 57x600"

    • Sii - 47x600"

    • Darks- 30

    • Flats- 30 per filter

    Capture Software:

    • Captured using N.I.N.A. and PHD2 for guiding and dithering.

    PixInsight Preprocessing:

    • BatchPreProcessing

    • StarAlignment

    • Blink

    • ImageIntegration per channel

    • DrizzleIntegration (2x, Var β=1.5)

    • Dynamic Crop

    • DynamicBackgroundExtraction

      duplicated each image and removed stars via StarXterminator. Ran DBE with a shitload of points to generate background model. model subtracted from original pic using the following PixelMath (math courtesy of /u/jimmythechicken1)

      $T * med(model) / model

    Narrowband Linear:

    • Blur and NoiseXTerminator

    • made SHO image and extracted stars to be processed separately

    • StarXterminator to completely remove stars from each Ha, Oiii, and Sii image

    • HistogramTransformation to stretch nonlinear

    Stars only image:

    • SpectrophotometricColorCalibration (narrowband working mode)

    • HSV repair

    • arcsinhstretch

    • scnr > invert > scnr > invert to remove greens and magentas

    • HistogramTransformation

    • (combined with starless pic later on)

    Nonlinear:

    • PixelMath to combine monochrome Ha Oiii and Sii images into a color image with SHO --> RGB, respectively

    • slight SCNR (bright areas protected with Ha mask)

    • Some curves to adjust colors

    • LRGBCombination using stretched Ha as luminance (accidentally left that Ha mask on from earlier so it applied more to the bright parts, and honestly turned out nicer than applying the Ha luminance to the entire image)

    • Shitloads of Curve Transformations to adjust lightness, hues, contrast, saturation, etc

    • DeepSNR

    • MLT for small scale chrominance noise reduction

    • DarkStructureEnhance script

    • LocalHistogramEqualization

    • more curves

    • invert > slight scnr (masked) > invert to remove some background magentas

    • even more curves

    • Pixelmath to add in the stretched RGB stars only image from earlier

      This basically re-linearizes the two images, adds them together, and then stretches them back to before. More info on it here)

      mtf(.005,

      mtf(.995,Stars)+

      mtf(.995,Starless))

    • Resample to 65%

    • Annotation




  • lefty7283@lemmy.worldOPtopics@lemmy.worldNebula near LBN 325 [OC]
    link
    fedilink
    English
    arrow-up
    5
    ·
    2 months ago

    Decided to just shoot a semi-random part of Cygnus. The large extended Ha region in Cygnus is unofficially called Smaug, and this is a photo specifically of the area around LBN 325/326. The nebulosity in this pic is false color, but the stars are true color RGB. I really love how this turned out with the narrowband palette, especially with the Oiii region on the right side looking almost like a true color Ha region. Captured over a shitload of nights from Aug-Oct 2024 from a bortle 9 zone.

    Places where I host my other images:

    Flickr | Instagram


    Equipment:

    • TPO 6" F/4 Imaging Newtonian

    • Orion Sirius EQ-G

    • ZWO ASI1600MM-Pro

    • Skywatcher Quattro Coma Corrector

    • ZWO EFW 8x1.25"/31mm

    • Astronomik LRGB+CLS Filters- 31mm

    • Astrodon 31mm Ha 5nm, Oiii 3nm, Sii 5nm

    • Agena 50mm Deluxe Straight-Through Guide Scope

    • ZWO ASI-290mc for guiding

    • Moonlite Autofocuser

    Acquisition: 57 hours 40 minutes (Camera at -15°C), NB exposures at unity gain and BB at half unity

    • Ha - 111x600"

    • Oiii - 127x600"

    • Sii - 94x600"

    • R - 48x60"

    • G - 48x60"

    • B - 44x60"

    • Darks- 30

    • Flats- 30 per filter

    Capture Software:

    • Captured using N.I.N.A. and PHD2 for guiding and dithering.

    PixInsight Preprocessing:

    • BatchPreProcessing

    • StarAlignment

    • Blink

    • ImageIntegration per channel

    • DrizzleIntegration (2x, Var β=1.5)

    • Dynamic Crop

    • DynamicBackgroundExtraction

    duplicated each image and removed stars via StarXterminator. Ran DBE with a shitload of points to generate background model. model subtracted from original pic using the following PixelMath (math courtesy of /u/jimmythechicken1)

    $T * med(model) / model

    Narrowband Linear:

    • Blur and NoiseXTerminator

    • StarXterminator to completely remove stars (to be later replaced by the RGB ones)

    • HistogramTransformation to stretch nonlinear

    RGB Linear:

    • ChannelCombination to combine monochrome R G and B frame into color image

    • SpectroPhotometricColorCalibration

    • BlurXTerminator for star sharpening (correct only)

    • HSV Repair

    • StarXterminator to generate a stars-only image

    • ArcsinhStretch + HT to stretch nonlinear (to be combined with starless narrowband image later)

    • Invert > SCNR > invert to remove magentas

    • Curves to saturate the stars a bit more

    Nonlinear:

    • PixelMath to combine monochrome Ha Oiii and Sii images into a color image with Jimmy’s Royale Palette

    R = 0.3*Oiii+0.7*(Oiii^~(0.7*Ha+0.3*Sii))^1.2

    G = ((Oiii*Ha)^~(Oiii*Ha))*Ha + ((Oiii*Ha)^(Oiii*Ha))*Sii

    B = 0.9*Sii+Ha-Oii

    • NoiseX again

    • Shitloads of Curve Transformations to adjust lightness, hues, contrast, saturation, etc

    • more curves

    • Extract L --> LRGBCombination for chrominance noise reduction

    • even more curves

    • Pixelmath to add in the stretched RGB stars only image from earlier

    This basically re-linearizes the two images, adds them together, and then stretches them back to before. More info on it here)

    mtf(.005,

    mtf(.995,Stars)+

    mtf(.995,Starless))

    • Couple final curves

    • Resample to 60%

    • Annotation




  • Med student here. I probably would’ve failed a lot of in house exams/step 1 if I didn’t use anki. IMO it’s best for solidifying knowledge and quick recall of facts, but doing a shitload of practice questions is the best way to apply what you’ve memorized through anki (this last bit is most applicable to med school/mcat prep).

    Really the main cost with it is your time. If you miss a day or two it can be daunting to get back in the groove and work on your review backlog. I usually have enough downtime during the day and time on the shitter to get through my reviews + whatever new cards I add. Anki itself is free but they do have a paid iOS app that I got just to use whenever I had a few mins of spare time.

    As for the learning curve, this will vary if you’re making your own cards vs using a premade deck for a large standardized exam. Once you know the formatting it isn’t that difficult to make cloze cards for what you’re trying to learn.






  • I love procrastinating on processing my images! I got set up early at a dark site last month and decided to shoot the sun while it was still up. There were a shitload of sunspots, including AR3697 in the bottom right. This sunspot group was the one that gave us the wonderful aurora back in May (back when it was known as AR3664)

    Places where I host my other images:

    Flickr | Instagram


    Equipment:

    • TPO 6" F/4 Imaging Newtonian

    • Orion Sirius EQ-G

    • ZWO ASI1600MM-Pro

    • Skywatcher Quattro Coma Corrector

    • ZWO EFW 8x1.25"/31mm

    • Astronomik LRGB+CLS Filters- 31mm

    • Moonlite Autofocuser

    • Astrozap BAADER AstroSolar Density 5 filter

    Acquisition:

    • Green filter - 5000 frames at gain 139 and 0.324ms exposure

    Capture Software:

    • Captured using sharpcap

    Processing:

    • Stacked the best 25% of frames in Autostakkert, 2X resample and autosharpened

    • Colorized using curves in Photoshop

    • More lightness/Hue Adjustments

    • Astrosurface wavelets to remove some grid artifacts from stacking

    • STF applied in pixinsight

    • Annotatation



  • I’m guessing it’s called that because it’s kinda headphone shaped. It was discovered in the 30’s so I’m assuming only the brightest parts of the nebula were visible to the astronomers.

    This image is a combination of false color narrowband images for the nebula itself, plus true color RGB stars (the nebula is mostly red and a little blue in true color). If you zoom in to the center you can see the very blue white dwarf that caused the planetary nebula to form. Also for those curious this is what a single 10 minute long Ha exposure looks like (image total is 83.5 hours exposure). Captured over 33 nights from Jan-May 2024 from a bortle 9 zone.

    Places where I host my other images:

    Flickr | Instagram


    Equipment:

    • TPO 6" F/4 Imaging Newtonian

    • Orion Sirius EQ-G

    • ZWO ASI1600MM-Pro

    • Skywatcher Quattro Coma Corrector

    • ZWO EFW 8x1.25"/31mm

    • Astronomik LRGB+CLS Filters- 31mm

    • Astrodon 31mm Ha 5nm, Oiii 3nm, Sii 5nm

    • Agena 50mm Deluxe Straight-Through Guide Scope

    • ZWO ASI-290mc for guiding

    • Moonlite Autofocuser

    Acquisition: 83 hours 30 minutes (Camera at -15°C), NB exposures at unity gain and BB at half unity

    • Ha - 238x600"

    • Oiii - 247x600"

    • R - 54x60"

    • G - 53x60"

    • B - 54x60"

    • Darks- 30

    • Flats- 30 per filter

    Capture Software:

    • Captured using N.I.N.A. and PHD2 for guiding and dithering.

    PixInsight Preprocessing:

    • BatchPreProcessing

    • StarAlignment

    • Blink

    • ImageIntegration per channel

    • DrizzleIntegration (2x, Var β=1.5)

    • Dynamic Crop

    • DynamicBackgroundExtraction 3x

    duplicated each image and removed stars via StarXterminator. Ran DBE with a shitload of points to generate background model. model subtracted from original pic using the following PixelMath (math courtesy of /u/jimmythechicken1)

    $T * med(model) / model

    Narrowband Linear:

    • Blur and NoiseXTerminator

    • StarXterminator to completely remove stars (to be later replaced by the RGB ones)

    • ArcsinhStretch to slightly stretch nonlinear

    • iHDR 2.0 script (low preset) to stretch each channel the rest of the way.

    here’s the link to the repo if you want to add it to your own PI install.

    RGB Linear:

    • ChannelCombination to combine monochrome R G and B frame into color image

    • SpectroPhotometricColorCalibration

    • BlurXTerminator for star sharpening (correct only)

    • HSV Repair

    • StarXterminator to generate a stars-only image

    • ArcsinhStretch + HT to stretch nonlinear (to be combined with starless narrowband image later)

    • Invert > SCNR > invert to remove magentas

    • Curves to saturate the stars a bit more

    Nonlinear:

    • PixelMath to combine stretched Ha and Oiii images into color image (/u/dreamsplease’s palette)

    R = iif(Ha > .15, Ha, (Ha*.8)+(Oiii*.2))

    G = iif(Ha > 0.5, 1-(1-Oiii)*(1-(Ha-0.5)), Oiii *(Ha+0.5))

    B = iif(Oiii > .1, Oiii, (Ha*.3)+(Oiii*.2))

    • NoiseX again

    • Background Neutralization

    • Shitloads of Curve Transformations to adjust lightness, hues, contrast, saturation, etc

    • even more curves

    • Pixelmath to add in the stretched RGB stars only image from earlier

    This basically re-linearizes the two images, adds them together, and then stretches them back to before. More info on it here)

    mtf(.005,

    mtf(.995,Stars)+

    mtf(.995,Starless))

    • Couple final curves

    • Resample to 65%

    • DynamicCrop

    • Annotation



  • Sh2-64 is the red nebula to the right of the image. It frames up pretty well with the more golden stars seen in the milky way core. I probably should’ve gotten more exposure time to help bring out some of the dark nebula details, but it was only clear for one night at the dark site (at least the night went perfectly, which is rare for trips out to the middle of nowhere). Captured on June 7th, 2024 from a Bortle 3 zone (Deerlick Astronomy Village)

    Places where I host my other images:

    Flickr | Instagram


    Equipment:

    • TPO 6" F/4 Imaging Newtonian

    • Orion Sirius EQ-G

    • ZWO ASI1600MM-Pro

    • Skywatcher Quattro Coma Corrector

    • ZWO EFW 8x1.25"/31mm

    • Astronomik LRGB+CLS Filters- 31mm

    • Astrodon 31mm Ha 5nm, Oiii 3nm, Sii 5nm

    • Agena 50mm Deluxe Straight-Through Guide Scope

    • ZWO ASI-290mc for guiding

    • Moonlite Autofocuser

    Acquisition: 5 hours 44 minutes (Camera at half unity gain -15°C)

    • L - 76x120"

    • R - 32x120"

    • G - 32x120"

    • B - 32x120"

    • Darks- 30

    • Flats- 30 per filter

    Capture Software:

    • Captured using N.I.N.A. and PHD2 for guiding and dithering.

    PixInsight Preprocessing:

    • BatchPreProcessing

    • StarAlignment

    • Blink

    • ImageIntegration per channel per panel

    • DrizzleIntegration (2x, Var β=1.5)

    • Dynamic Crop

    • DynamicBackgroundExtraction

    Luminance Linear:

    • BlurXterminator (Correct only)

    • NoiseXterminator

    • HistogramTransformation + sketchpad’s iHDR script (low preset) to stretch to nonlinear

    RGB Linear:

    • ChannelCombination to combine monochrom R G and B stacks into color image

    • SpectrophotometricColorCalibration

    • BlurXterminator (correct only)

    • HSV repair

    • ArcsinhStretch + iHDR script (low preset) to stretch to nonlinear

    Nonlinear Processing:

    • LRGBCombination using stretched L as luminance

    • DeepSNR

    • Various curve adjustments for lightness, contrast, hue, saturation, etc (with varying lum/star masks)

    • Slight SCNR green

    • ColorSaturation to boost the saturation of the Ha region

    • More curves

    • NoiseXterminator

    • invert > SCNR > invert to remove some magentas

    • LocalHistogramEqualization

    two rounds at scale 16 and 132 to target different sized structures

    • LOTS more curve adjustments

    • MultiscaleLinearTransform for chrominance noise reduction

    • Even more curves

    • Resample to 60%

    • Annotation





  • Finally done with classes and I got some time to at least star processing my pics. Gonna be a while before I figure out all the HDR stuff, so here’s a pic of the prominences about 10 seconds before C3. It was absolutely nutty seeing them naked eye during the eclipse, and visually through my other telescope. Captured on April 8th, 2024 from Sikeston, MO.

    Places where I host my other images:

    Flickr | Instagram


    Equipment:

    • TPO 6" F/4 Imaging Newtonian

    • Orion Sirius EQ-G

    • Canon T3i (Ha modded)

    • Skywatcher Quattro Coma Corrector

    • Moonlite Autofocuser

    Acquisition:

    • Single 1/4000" exposure at ISO 100

    Capture Software:

    • Eclipse Orchestrator Free for automating the capture sequence

    • NINA for controlling the mount and autofocuser

    Photoshop processing:

    • Crop, and some minor adjustments to exposure, contrast, shadows, whites, and blacks, and slight S curve



  • lefty7283@lemmy.worldOPtopics@lemmy.world23% Waxing Crescent [OC]
    link
    fedilink
    English
    arrow-up
    3
    ·
    8 months ago

    Thanks to my north facing balcony, I can only photograph the moon when it’s at high declinations. Fortunately it was at +27 dec the other day, and it was early enough for me to be awake to shoot it! Captured at 10pm on April 12th, 2024.

    Places where I host my other images:

    Flickr | Instagram


    Equipment:

    • TPO 6" F/4 Imaging Newtonian

    • Orion Sirius EQ-G

    • ZWO ASI1600MM-Pro

    • Skywatcher Quattro Coma Corrector

    • ZWO EFW 8x1.25"/31mm

    • Astronomik LRGB+CLS Filters- 31mm

    • Astrodon 31mm Ha 5nm, Oiii 3nm, Sii 5nm

    • Agena 50mm Deluxe Straight-Through Guide Scope

    • ZWO ASI-120MC for guiding

    • Moonlite Autofocuser

    Acquisition: (Camera at Unity Gain, -15°C)

    • R - 20000 x 5.4ms

    • G - 2000 x 4.3ms

    • B - 2000 x 6.0ms

    Capture Software:

    • Captured using Sharpcap and N.I.N.A. for mount/filterwheel control

    Stacking:

    • Stacked the best 25% of frames in Autostakkert (autosharpened, 3X Drizzle)

    PixInsight Processing:

    • DynamicCrop

    • ChannelCombination to combine monochrome images into RGB image

    • ChannelMatch to align G and B color channels to red

    • ColorCalibration

    • HistogramTransformation (slight stretch)

    • SCNR > invert > SCNR to remove green and magenta color fringing

    • CurvesTransformations to adjust lightness, contrast, colors, saturation, etc.

    • LocalHistogramTransformation

    • dynamic crop

    • Annotation




  • Holy shit this was the most awesome thing I’ve ever experienced. I’ve been prepping for this eclipse ever since I got clouded out at the last minute for the 2017 eclipse, and almost everything went perfectly! (I didn’t even hit eclipse traffic on the way home!) With the camera automated I got 163 HDR pics during totality, plus more from the partial phases, so expect to see some more pics in the coming weeks!

    I really like how the diffraction spikes turned out from the Bailey’s Beads, and how the blue turned out in my totality pics. I tried to keep the editing minimal on this, and just did some minor contrast and saturation adjustments (see below for more details). The corona in the image is definitely bluer than how it looked irl (which was mostly just white), but the prominence color is pretty close to what I saw through my other scope. I suspect it’s because of the custom white balance I’ve had to use for my astro modded cam. For those curious here are my other C2 pics, unedited other than cropping

    Captured on April 8th, 2024 from Sikeston, MO.

    Places where I host my other images:

    Flickr | Instagram


    Equipment:

    • TPO 6" F/4 Imaging Newtonian

    • Orion Sirius EQ-G

    • Canon T3i (Ha modded)

    • Skywatcher Quattro Coma Corrector

    • Moonlite Autofocuser

    Acquisition:

    • Single 1/4000" exposure at ISO 100

    Capture Software:

    • Eclipse Orchestrator Free for automating the capture sequence

    • NINA for controlling the mount and autofocuser

    Photoshop processing:

    • Just a crop, and some minor adjustments to exposure, contrast, shadows, whites, and blacks


  • The Little Dumbbell Nebula gets its name because it kinda looks like a tinier version of the Dumbbell Nebla M27 (yes, a different palette was used for this pic). It’s really tiny compared to the uncropped FOV. I’m a lot happier with this attempt at it, compared to my 2019 pic of M76 with the same equipment. I know It’s a bit out of season rn but I needed something to shoot at the start of the night. The nebulosity itself is false color, but the stars are true color RGB. Captured over 10 nights in Feb/Mar 2024 from a bortle 9 zone (I could only get a couple hours max per night on it.

    Places where I host my other images:

    Flickr | Instagram


    Equipment:

    • TPO 6" F/4 Imaging Newtonian

    • Orion Sirius EQ-G

    • ZWO ASI1600MM-Pro

    • Skywatcher Quattro Coma Corrector

    • ZWO EFW 8x1.25"/31mm

    • Astronomik LRGB+CLS Filters- 31mm

    • Astrodon 31mm Ha 5nm, Oiii 3nm, Sii 5nm

    • Agena 50mm Deluxe Straight-Through Guide Scope

    • ZWO ASI-290mc for guiding

    • Moonlite Autofocuser

    Acquisition: 21 hours 6 minutes (Camera at -15°C), NB exposures at unity gain and BB at half unity

    • Ha - 99x360"

    • Oiii - 83x360"

    • R - 101x60"

    • G - 100x60"

    • B - 99x60"

    • Darks- 30

    • Flats- 30 per filter

    Capture Software:

    • Captured using N.I.N.A. and PHD2 for guiding and dithering.

    PixInsight Preprocessing:

    • BatchPreProcessing

    • StarAlignment

    • Blink

    • ImageIntegration per channel

    • DrizzleIntegration (2x, Var β=1.5)

    • Dynamic Crop

    • DynamicBackgroundExtraction

    duplicated each image and removed stars via StarXterminator. Ran DBE with a shitload of points to generate background model. model subtracted from original pic using the following PixelMath (math courtesy of /u/jimmythechicken1)

    $T * med(model) / model

    Narrowband Linear:

    • Blur and NoiseXTerminator

    • StarXterminator to completely remove stars (to be later replaced by the RGB ones)

    • ArcsinhStretch to slightly stretch nonlinear

    • iHDR 2.0 script to stretch each channel the rest of the way.

    This is a great new pixinsight script from Sketch on the discord. here’s the link to the repo if you want to add it to your own PI install.

    RGB Linear:

    • ChannelCombination to combine monochrome R G and B frame into color image

    • SpectroPhotometricColorCalibration

    • BlurXTerminator for star sharpening

    • HSV Repair

    • StarXterminator to generate a stars-only image

    • ArcsinhStretch + HT to stretch nonlinear (to be combined with starless narrowband image later)

    Nonlinear:

    • PixelMath to combine stretched Ha and Oiii images into color image (/u/dreamsplease’s palette)

    R = iif(Ha > .15, Ha, (Ha*.8)+(Oiii*.2))

    G = iif(Ha > 0.5, 1-(1-Oiii)*(1-(Ha-0.5)), Oiii *(Ha+0.5))

    B = iif(Oiii > .1, Oiii, (Ha*.3)+(Oiii*.2))

    • NoiseX again

    • Shitloads of Curve Transformations to adjust lightness, hues, contrast, saturation, etc

    • LocalHistogramEqualization

    • UnsharpMask

    • More curves

    • ColorSaturation to slightly desaturate the purples

    • even more curves

    • Pixelmath to add in the stretched RGB stars only image from earlier

    This basically re-linearizes the two images, adds them together, and then stretches them back to before

    (again, credit to Jimmy independent starless processing stuff)

    mtf(.005,

    mtf(.995,Stars)+

    mtf(.995,Starless))

    • Couple final curves

    • DynamicCrop waaaay in on the nebula

    • Annotation